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ABSTRACT

This paper presents the results from multivariate regression analyses on rut data from the SPS-1 experiment in 
the Long Term Pavement Performance (LTPP) program to develop models for predicting permanent 
deformation parameters (α and µ) for a three-layer pavement system (asphalt concrete, base and subgrade).
All available material, structural and climatic data used to explain rutting were extracted from the LTPP 
database. Using simple linear regression, α and µ were regressed against these independent variables. The 
variables that have reasonable relationships (relatively higher R2) were introduced into the multiple linear 
regression models. The backward regression analysis was used to select the statistically significant variables for 
the final models. 

The variables selected for AC rutting included the strain at the middle of the AC layer, % passing sieve number 
10 and % voids filled with asphalt of the most upper AC layer, the average of daily maximum air temperatures 
for the year, and the freezing index. A total of 15 out of 109 sections were used for predicting αAC and µAC. This 
is due to the limited amount of available data to calculate VTM, VFA, and VMA, which are important for 
explaining the rate of the AC rutting. The variables selected for base rutting included the backcalculated base 
modulus, thickness of the base layer, % passing sieve number 200, a newly developed weighted average 
gradation index, and the strain at the middle of the base layer. A total of 27 out of 109 sections were used for 
predicting αbase and µbase. The variables selected for subgrade rutting included the strain at the middle of the first 
40 inches of subgrade, a weighted gradation index and the plasticity index of the subgrade, the number of days 
above 32.2 oC, the number of days with more than 0.25 mm precipitation, and the backcalculated subgrade 
modulus. A total of 17 out of 109 sections were used for predicting αsubgrade and µsubgrade.

In general, the α−prediction models for all layers are more precise than those for µ. This could be due to the fact 
that the α and µ values were backcalculated from time-series data, which show the rate of growth in rut depth
over time. Also it should be noted that µ-values for the AC and base layers were significantly affected 
(positively) by their corresponding α-values. This implies that pavements with lower µ-values (lower initial 
rutting) will show lower α-values (higher rut growth with time) and vice-versa. 
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INTRODUCTION

Since rutting is a major failure mode in flexible pavements, researchers have been trying to predict rut depth for 
future rehabilitation and budget allocation. There are two main approaches for the prediction of rutting: 1) 
subgrade strain model (i.e. AI and Shell models) and 2) permanent deformation within each layer. The first 
approach assumes that most of the rutting results from the subgrade layer only, and is no longer valid based on 
observations from the field. The second approach considers the rutting contribution from all pavement layers, 
and is not widely used due to the difficulties in determining the elasto-plastic characteristics of pavement 
materials. Due to increased tire pressures and new axle configurations as well as observations from the field, 
researchers began to investigate the rutting contribution from all pavement layers.  This approach is also 
implemented in the new mechanistic-empirical (ME) pavement design guide. 

One of the main models related to this approach is the VESYS rutting model (1) that relates the plastic 
strain to the elastic strain through the permanent deformation parameters (PDPs) µ and α as follows:

( )n np e
αε µε −=

(1) 

where
( )npε = the permanent or plastic strain at the nth load application,

eε = the elastic or resilient strain at 200 repetitions,

n = the number of load applications,
α = permanent deformation parameter indicating the rate of decrease in permanent 

deformation (hardening) as the number of load applications increases (0 < α < 1),
µ = permanent deformation parameter representing the constant of proportionality between 

plastic and elastic strain (µ > 0).  Values greater than 1 indicate premature rutting.

The total rut depth can be obtained by integrating Equation 1 over n, multiplying the average vertical 
elastic strain at the center of each layer by its thickness, and summing the deformations aver all layers:
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pρ = total cumulative rut depth (in the same units as the layer thickness),
i = subscript denoting axle group,
K = number of axle group,
h = layer thickness for AC layer, combined base layer, and subgrade layer, respectively,
n = number of load applications,
εe = compressive vertical elastic strain at the middle of the layers,

µ = permanent deformation parameter representing the constant of proportionality between  plastic 
and elastic strain, and 

α
= permanent deformation parameter indicating the rate of change in rutting as the number of load 

applications increases.

The most essential task in using this model is to accurately predict µ and α for each pavement layer
within the pavement system. The permanent deformation parameters, PDPs can be predicted using laboratory 
(2) or field data. Once the PDPs are determined, Equation 2 can be used to decompose the total rutting into 
percentages for each pavement layer.

Ali et al., 1998 (3) calibrated the new form of the model using 61 sections from the Long Term 
Pavement Performance (LTPP) General Pavement Study 1 (GPS-1) by backcalculating the permanent 
deformation parameters for each layer. Ali and Tayabji, 2000 (4) also proposed using a transverse profile to 
backcalculate permanent deformation parameters, and reported one set of values obtained from only one LTPP 
section. Kenis, 1997 (5) used Accelerated Pavement Test (APT) performance data to validate and calibrate the 
two flexible pavement rutting models used in VESYS 5. In their study, they suggested a range for the permanent 
deformation parameters for the pavement layers. Eventhough several attempts have been made to estimate these 
parameters, agreement between studies varies.  
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Simpson et al., 1994 (6) developed a rutting model to predict the total rut depth for LTPP data (GPS-1 
and GPS-2). The model uses a multiplicative regression equation and includes several variables including 
environmental conditions, material properties, pavement layer cross section, and construction quality. In a 
further study, Simpson et al., 1995 (7) distinguished the rutting contribution from each pavement layer using the 
same LTPP data. A general model for the total surface rutting, subgrade rutting, base rutting, AC rutting, and 
heave was generated using neural network analysis. The variables that were considered in each model are listed 
in Table 1.  

RESEARCH OBJECTIVES

The main objective of this paper is to develop regression models for predicting permanent deformation 
parameters α and µ for the VESYS empirical-mechanistic rut model. The variables included in the model are 
pavement layer material properties, climatic-based indices and pavement structural parameters. All the data used 
in this analysis are from the Long Term Pavement Performance (LTPP) SPS-1 experiment. A total of 109 
pavement sections with time series rut data totaling 724 data points were considered in the analysis. The 
calibrated variables α and µ were obtained using a Backcalculation scheme that involved iterating over trial 
values using commercially available “Solver” in Excel Microsoft software. The details of the Backcalculation 
analysis are described elsewhere (8, 9). A brief summary of the analysis follows.

BACKCALCULATION OF PDPs

Salama et al., 2005 (8) backcalculated the PDPs by matching the rut time series data from the SPS-1 
experiment in the LTPP program. The most novel aspect of this backcalculation process involved the 
application of the approach developed in NCHRP 468 (10), which uses transverse surface profiles to locate the 
layer causing most of rutting. Using this process, the most likely solution for these parameters was attained for 
109 pavement sections within the SPS-1 experiment. Figure 1 shows predicted versus measured rut depth. The 
backcalculted PDPs needed for matching the time series rut data were considered as the “actual” values since 
the match was very good (R2 = 0.929, SE = 0.04mm).

AVAILABLE MATERIAL PROPERTIES

The LTPP database provides information for the pavement layers of all SPS-1 experiment sections, structural, 
material as well as climatic variables. Several data elements were extracted for each pavement layer from 
release 17 of the LTPP database (datapave.com) as follows:

• AC layer
o The gradation of the fine and coarse aggregate, 
o Bulk specific gravity of fine and coarse aggregate,
o Bulk specific gravity of the asphalt mixture from field cores,
o Maximum theoretical specific gravity of the HMA mixture,
o AC binder content,
o Kinematic and absolute viscosity of the asphalt binder
o Indirect tensile strength of the HMA mixture,
o Resilient modulus of the HMA mixture.

•  Base layer
o The gradation of the fine and coarse aggregate,
o Atterberg limits (liquid and plastic limits).

• Subgrade layer
o Gradation,
o Moisture content,
o Atterberg limits (liquid and plastic limits),
o Unconfined compressive strength of the clay.

Using the AC layer data, the voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with 
asphalt (VFA) were calculated using the HMA volumetric equations (9 and 11). Several climatic variables were 
extracted from the SPS-1 data and considered in the regression analysis as follows:

o Mean annual temperature,
o Maximum annual temperature,
o Minimum annual temperature,
o Days above 32 oC, 
o Days below 0 oC, 
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o Freeze index,
o Freeze thaw cycle,
o Total annual precipitation,
o Wet days,
o Intense precipitation days/year.

More detail descriptions of the climatic variables can be found elsewhere (12). The pavement layer thicknesses 
from the backcalculation procedure and the strain at the middle of each pavement layer (calculated using the 
KENLAYER program (13)) were considered as independent variables in the regression analysis. Since the 
independent variables are many, not all are introduced in the multiple linear regression analysis. Based on 
previous studies (8 and 9) along with the simple univariate linear regression of each variable, the independent 
variables that have reasonable relationships with the PDPs were selected and introduced in the model. 
Additionally, the backward regression analysis was used to select the most statistically significant variables for 
each permanent deformation parameter.

REGRESSION ANALYSIS

In this paper, the multiplicative form of multiple linear regression was utilized to oversee the nonlinear 
relationship between the PDPs and the independent variables. Using this multiplicative model requires the 
dependent variable to be regressed on the natural logarithm of the independent variables; for more detail see (6). 
Several precautions were taken into consideration to ensure integrity of the model as follows:

• The signs of the multiple linear regression coefficients should agree with the signs of the simple linear 
regression of the individual independent variables,

• The signs of the multiple linear regressions for each independent variable should agree with intuitive 
engineering judgment. For example, higher annual temperature should increase the rate of the rutting in 
AC layer, and therefore create more positive values for (1-α) and µ.

• There should be no multicollinearity among the final selected independent variables. For example, two 
independent variables having the same effect (high bivariate correlation) on the dependent variable 
should not be included in one model at the same time.

• One of several variable selection algorithms (e.g. stepwise, forward, and backward regression analyses)
was used in regression to eliminate the statistically insignificant independent variables for each of the 
six models. For example, for the AC layer, the α model started with average of daily maximum air 
temperatures, percent passing sieve number 10, percent voids filled with asphalt, vertical compressive 
strain at the middle of AC layer, kinematic viscosity of the asphalt binder at 275 F,  percent asphalt 
content, and asphalt concrete layer thickness and ended up with only vertical compressive strain at the 
middle of AC layer, percent passing sieve number 10, percent voids filled with asphalt, and average of 
daily maximum air temperatures remaining as significant contributors to the model after a backward 
regression analysis (see equation 3).  For more detail on the variable selection, see (6).

• The model with the smallest number of independent variables, minimum standard error, and highest R2

value was selected.
In addition, after finalizing the model for each permanent deformation parameter, the regression models were 
tested to ensure there were no assumption violations. These tests are:

• Normality distribution,
• Constant variance,
• Cook’s distance.

Asphalt Concrete Layer Regression Analysis

The rutting in the AC layer is characterized by αAC and µAC. The parameter, αAC, represents the rate of decrease 
in AC rutting as the number of load applications increases and as the material becomes stiffer (the hardening 
effect due to environmental conditions). The parameter, µAC, represents the constant of proportionality between 
plastic and elastic strain within the AC layer.

There are several factors affecting AC rutting. All available material and climatic data used to explain 
AC rutting (8 and 9) were extracted from the LTPP database. Using simple linear regression, αAC and µAC were 
regressed against these independent variables. The variables that have reasonable relationships (relatively higher 
R2) were introduced into the multiple linear regression models. The backward regression analysis was used to 
select the statistically significant variables for the final model. A total of 15 out of 109 sections were used for 
predicting αAC and µAC. This is due to the limited amount of available data to calculate VTM, VFA, and VMA, 
which are important for explaining the rate of the AC rutting. Equations 3 and 4 show the final model for 
αAC and µAC. 
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( )0.555 0.58 0.7321.0135105.124* * *( ) *( )10Strain P VFA MAA TACα −−= (3) 

4.102 0.2136.746 * *AC AC FIµ α −= (4) 

where:
Strain = strain at the middle of AC layer due to ESAL

P10 = % passing sieve number 10 of the most upper AC layer
VFA = % voids filled with asphalt of the most upper AC layer

MAA T = Average of daily maximum air temperatures for year, oC
FI = freezing index

It can be seen from the equations that αAC is a function of P10 and VFA (both material-related 
properties), strain (structure-related), and MAAT (environment-related), while µAC is a function of αAC (rate of 
rutting) and FI (environment-related). This implies that, in order to predict µAC, an estimate for αAC must be 
predicted first. Attempts were made to predict µAC from variables other than αAC, but all alternatives to using 
αAC were found to have much lower R2 values. Table 2 shows the analysis of variance of the multiple linear 
regressions of αAC and µAC. The table shows the degrees of freedom (the number of sections used, minus one), 
the sum of squares and mean square errors, the F-test results, and the p-value (significance) for each model. The 
results show that the overall models for αAC and µ AC (as well as for base and subgrade layers) are statistically 
significant. Table 3 shows 90% and 79% variance for the natural logarithm-based, multiplicative models of αAC

and µAC, respectively.

Table 4 shows the unstandardized and standardized model coefficients, t-test, statistical significance, and 
collinearity statistics for both αAC and µAC.  It can be seen from the table that all independent variables included 
in the model for both αAC and µAC are statistically significant. Also, there was no concern about the 
multicollinearity (small variance inflation factor, VIF). Moreover, there is a good agreement between the 
multiple linear regression coefficient signs and the univariate relationships of the individual variables. The 
standardized regression coefficients show that:

• The higher the initial strain or the MAAT, the higher the αAC value, which means a lower rate of 
rutting progression with time (the exponent is 1-αAC). In other words, if the AC layer is soft (higher 
initial strain) or the climatic region is hot (higher temperatures), the majority of the rutting will occur at 
the initial stage and taper off with the remaining life of the pavement.

• The higher the percent passing sieve number 10 or the percent of voids filled with asphalt, the lower 
the αAC value, which means a higher rate of rutting progression with time. In other words, rutting will 
be more pronounced if the AC layer is composed of a finer mix or it contains more voids.

• The higher the αAC, the higher the µAC. This means that pavements with lower initial rutting (lower µAC

value) will show rutting over a longer period of time (lower αAC value). 

• The higher the freezing index for a region, the lower its µAC values.  This indicates that unlike hotter 
regions, pavements constructed in colder regions will show lower initial rutting.

The standardized regression coefficients were used to rank the importance of the independent variables to αAC

and µAC values, as shown in Table 4. 

Figure 2 shows the actual versus predicted αAC and µAC. The “actual” values are previously determined through 
backcalculation using SPS-1 time-series data (6 and 10). It can be seen from the figure that the prediction of αAC

is significantly higher than that of µAC. Note, however, that reasonable prediction of µAC were possible at lower 
values (µ< 0.5). Also, note that good prediction of µAC at higher values (>1) is not expected since higher µAC

values represent higher initial AC rutting due to specific problems (material-or construction-related). R2- values 
shown in Figure 2 correspond to original scale, and are lower than the model R2-values shown in Table 3. 

Table 5 shows the descriptive statistics for αAC, µAC and their independent variables used in the regression 
analyses. It should be noted that Equations 3 and 4 should be used within the range for each variable listed in 
Table 5 in order to obtain reasonable predictions.
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Base Layer Regression Analysis

For the base layer, the only data available were the gradation, base thickness used in the backcalculation, and the 
calculated strain at the middle of the base due to one standard axle. Unlike the AC layer, in which the materials 
are highly controlled, the base and subgrade layers of flexible pavements are frequently more dissimilar from 
one section to another. This becomes evident when examining sieve analyses.  Figure 3 shows how the AC 
layer-content is much more consistent than that of the base and subgrade layers, since consistency of layer 
material across sites (each curve represents one site) can be ascertained by the uniformity of the graphs. Since 
the content of AC material is highly controlled, a particular sample can be uniquely identified by an individual 
sieve measurement, that is, the percent material passing through one particular sieve (see Figure 3 (a)). This is 
not the case for the base layer material, since base materials from two different sections might have the same 
percent passing through one sieve and different gradations for the other sieves, as shown in Figure 3 (b).  
Therefore, while a single sieve percentage (amount passing sieve #10) was selected by the AC layer regression
as significant, a new index, termed Gradation Index (GI), is introduced in this analysis to represent the gradation 
of the base layer such that using the GI alone or with the percent passing of any given sieve (such as sieve 4, 10, 
or 200) will be more representative of an individual base layer’s material. The GI can be calculated from the 
following equation:

*log

log

p SS
GI

SS

∑

∑
=  (5) 

where 
p =  % passing of the individual sieve, and

log SS = logarithm of sieve size in mm.

For the base regression analysis, only sections that have base rutting of 10 percent or more out of the total 
surface rutting and available base gradations were considered; these total 27 out of 109 sections. The final 
regression equations for predicting the αbase and µbase are shown below: 

5 0.102 0.066 1.9820.0982.724*10 *modulus *Thickness * *200P GIbaseα − −=  (6) 

3 0.808 0.8096.2567.1977*10 * *Thickness *strainbase baseµ α− − −=  (7) 

where
Modulus = backcalculated base modulus, psi 
Thickness = Thickness of base layer used in the backcalculation, in
P200 = % passing sieve number 200
GI = Gradation index
Strain = Strain at the middle of the base layer due to one standard axle

Table 2 shows the analysis of variance of the multiple linear regression for αbase and µbase. The results show that 
the overall models for αbase and µbase are statistically significant. Table 3 shows that 50.6 % and 68.7 % of the 
variance for ln (αbase) and ln (µbase), respectively, is explained by ln of the independent variables.  

Table 4 shows the unstandardized and standardized model coefficients, t-test, statistical significance, and 
collinearity statistics for both αbase and µbase.  It can be seen from the table that all independent variables 
included in the model for both αbase and µbase are statistically significant except for the base thickness in the αbase

model. Excluding the base thickness from the model causes a dramatic reduction of R2; therefore base thickness 
was kept in the model. Also, there was no concern about  multicollinearity (small VIF). Moreover, there is a 
good agreement between the multiple linear regression coefficient signs and the univariate relationships of the 
individual variables. The standardized regression coefficients show that:

• The higher the initial modulus, the higher the αbase value, which means a lower rate of rutting 
progression with time (the exponent is 1-αbase).  

• The thicker the base or higher GI (coarser material), the higher the αbase, which means a lower rate of 
base rutting with time.

• The higher the percent passing sieve 200, the lower the αbase, which leads to a higher rate of rutting 
with time. 
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• Similar to the AC layer, there is a strong relationship between αbase and µbase (R
2 = 0.5949); the higher 

the αbase the higher the µbase . This means that a pavement with lower initial rutting (lower µbase value) 
will show rutting over a longer period of time (lower αbase value).

• The thicker the base layer or higher initial strain value, the lower the µbase, which indicates that rutting 
will keep progressing with time.

The standardized regression coefficients were used to rank the importance of the independent variables in the 
αbase and µbase models, as shown in table 4. Figure 4 shows the actual versus predicted αbase and µbase. It can be 
seen that similarly to the AC layer, there is better prediction for αbase than for µbase. Also, the prediction of µbase

worsens at higher µbase values. Again, note that, higher µbase-values (µbase > 1) are indicative of premature rutting 
which could be caused by specific material-or construction-related problem. Table 5 shows the descriptive 
statistics of αbase, µbase and their independent variables used in the regression analysis. It should be noted that 
Equations 6 and 7 should be used within the range of the data in Table 5 to obtain reasonable predictions.

Subgrade Regression Analysis 

Similar to the base layer and even more pronounced, the percent subgrade material passing through one sieve is 
not enough to characterize the subgrade materials, as shown in Figure 3 (c). Therefore, the need for the GI 
(Equation 5) is at least as great for the subgrade regression analysis as it was for the base layer.

For subgrade analysis, only those sections that show rutting in the subgrade and have αSG values less than 0.9 
were considered, totaling 17 out of 109 sections. The final regression equations for predicting αSG and µSG are 
shown below: 

5 0.043 1.89 0.116 0.036 0.3260.141.385 10 * * * * * * wet days32strain GI PI D FISGα −= × (8) 

304.1*594.22*764.0*41.2mod*6310*575.2 PIGIstrainulusSG
−−=µ  (9) 

where
Strain = Strain at the middle of the first 40 inches of subgrade layer due to one ESAL

GI = Gradation index (as calculated from equation 5 )
PI = Plasticity index of subgrade layer
D32 = Number of days where daily maximum air temperature is above 32.2 oC for year

Wet days = Number of days for which precipitation was greater than 0.25 mm for year.
Modulus = backcalculated subgrade modulus, psi

Table 2 shows the analysis of variance for αSG and µSG. The results show that the overall models for αSG and µSG

are statistically significant. Table 3 shows that 47.3% and 84.8% of the variance for ln (αSG) and ln (µSG), 
respectively, is explained by ln of the independent variables. Table 4 shows the unstandardized and standardized
model coefficients, t-test, statistical significance, and collinearity statistics for both αSG and µSG.  It can be seen 
from the table that all independent variables included in the model for both αSG and µSG are statistically 
significant except for the strain and FI in the αSG model. Excluding either of these variables from the model 
causes a dramatic reduction of the R2 value; therefore, similar to the base layer, they were kept in the model 
since the backward regression analysis selects them. Also, there was no concern about multicollinearity (small 
VIF). Moreover, there is a good agreement between the multiple linear regression coefficient signs and the 
univariate relationship of the individual variables. The standardized regression coefficients (Table 4) show that:

• The higher the PI, GI, D32, wet days, FI, and vertical compressive strain at the middle of the first 40 
inches (1016 mm) of the subgrade, the higher the αSG, which means a lower rate of rutting progression 
with time (the exponent is 1-αSG).  

• The higher the PI, GI, and subgrade modulus, the higher the µSG, which means a majority of the 
resulting rutting will occurs at the first stage of pavement life with very little progression with time. 
Similar to the base layer, higher initial strain value in the subgrade indicates that rutting will keep 
progressing with time. Figure 5 shows the actual versus prediction of αSG and µSG. The prediction of 
αSG and µSG are reasonable, although the later prediction worsens at higher µSG-values. As mentioned 
above, these are indicative of early rutting, which could be due to material-or construction-related 
problems. 
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Table 5 shows the descriptive statistics of αSG, µSG and the independent variables used in the regression 
analysis. Similar to the AC and base layers, Equations 8 and 9 should be used within the range of the data in 
Table 5 to obtain reasonable predictions.

To verify the total surface rutting prediction, Figure 6 shows the field versus predicted total surface rut 
depth for section SPS-1 50113. The predicted rut depth was calculated using Equation 2 and the PDPs for all 
pavement layers were calculated through equations 3, 4, 6, 7, 8 and 9. 

Finally, it is interesting to note that, using Equation 2 to decompose the total rutting, a majority of the total 
rutting occurs within the AC layer (on average, 57%), followed by the base layer (27.5%) and the subgrade layer 
(15.5%) for SPS-1 experimental sections. This is paralleled by the fact that the base and subgrade layers have 
successively more variables available within the predictive models than the AC layer. Also, the AC regression 
analysis showed that the overall model for αAC and µAC are statistically significant, as are all variables included. 
On the other hand, the overall models for αbase and µbase are statistically significant, with only one insignificant 
variable (base thickness). Following the same pattern of decreased significance with decreased rutting 
percentage, the overall models for αSG and µSG are statistically significant, yet contain two insignificant 
variables (strain and FI). This understandable pattern suggests the need for more study and further theorizing of 
variables to explain rutting within the base and subgrade layers.

CONCLUSION

Three sets of regression equations relating the permanent deformation parameters α and µ of the AC, base and 
subgrade layers, respectively, were developed using multivariate regression analyses on rut data from the SPS-1 
experiment in the Long Term Pavement Performance (LTPP) program.  All available material, structural and 
climatic data used to explain rutting were extracted from the LTPP database. Using simple linear regression, α
and µ were regressed against these independent variables. The variables that have reasonable relationships 
(relatively higher R2) were introduced into the multiple linear regression models. The backward regression 
analysis was used to select the statistically significant variables for the final models. 

The variables selected for AC rutting included the strain at the middle of the AC layer, % passing sieve number 
10 and % voids filled with asphalt of the most upper AC layer, the average of daily maximum air temperatures 
for the year, and the freezing index. A total of 15 out of 109 sections were used for predicting αAC and µAC. This 
is due to the limited amount of available data to calculate VTM, VFA, and VMA, which are important for 
explaining the rate of the AC rutting. The variables selected for base rutting included the backcalculated base 
modulus, thickness of the base layer, % passing sieve number 200, a newly developed weighted average 
gradation index, and the strain at the middle of the base layer. A total of 27 out of 109 sections were used for 
predicting αbase and µbase. The variables selected for subgrade rutting included the strain at the middle of the first 
40 inches of subgrade, a weighted gradation index and the plasticity index of the subgrade, the number of days 
above 32.2 oC, the number of days with more than 0.25 mm precipitation, and the backcalculated subgrade 
modulus. A total of 17 out of 109 sections were used for predicting αsubgrade and µsubgrade.

In general, the α−prediction models for all layers are more precise than those for µ. This could be due to the fact 
that the α and µ values were backcalculated from time-series data, which show the rate of growth in rut depth 
over time. Also it should be noted that µ-values for the AC and base layers were significantly affected 
(positively) by their corresponding α-values. This implies that pavements with lower µ-values (lower initial 
rutting) will show lower α-values (higher rut growth with time) and vice-versa.  
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Table 1 Independent variables included in different models (9)

Total surface rutting Subgrade rutting Base rutting AC rutting Heave
AC thickness
Air voids percentage
Asphalt viscosity @140oF
Annual precipitation
Number of days above 90oF
Freeze thaw cycles
Plasticity Index
Subgrade moisture
% passing # 200 in subgrade
Base thickness
ESALs

Annual precipitation
Number of days above 90oF
Freeze thaw cycles
Plasticity Index
Subgrade moisture
% passing # 200 in subgrade
ESALs

Annual precipitation
Number of days above 90oF
Base thickness
Base compaction
ESALs

AC thickness
Asphalt content
Air voids percentage
% passing # 4 in AC
Asphalt viscosity @140oF
Number of days above 90oF
ESALs

Annual precipitation
Freeze thaw cycles
Plasticity Index
Subgrade moisture
% passing # 200 in subgrade
ESALs
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Table 2 ANOVA for permanent deformation parameters of AC, base, and subgrade layers

Variable
Sum of Squares df Mean Square F Sig.

Regression 1.675 4 0.419 33.604 0.000

Residual 0.125 10 0.012αAC

Total 1.800 14

Regression 16.675 2 8.338 26.065 0.000

Residual 3.519 11 0.320µAC

Total 20.194 13

Regression 0.674 4 0.169 7.653 0.001

Residual 0.485 22 0.022αBase

Total 1.159 26

Regression 59.631 3 19.877 20.000 0.000

Residual 22.859 23 0.994µBase

Total 82.490 26

Regression 0.152 6 0.025 3.389 0.043

Residual 0.075 10 0.007αSG

Total 0.227 16

Regression 33.212 4 8.303 23.344 0.000

Residual 4.268 12 0.356µSG

Total 37.480 16

Table 3 Model Summary for permanent deformation parameters of AC, base, and subgrade layers

Variable R R2* Adjusted R2 Std. Error of the Estimate

αAC 0.965 0.931 0.903 0.112

µAC 0.909 0.826 0.794 0.566

αBase 0.763 0.582 0.506 0.148

µ Base 0.850 0.723 0.687 0.997
αSG 0.819 0.670 0.473 0.087
µSG 0.941 0.886 0.848 0.596

* Note: R2 values correspond to the natural logarithm of the multiplicative model form 
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Table 4 Model coefficients for permanent deformation parameters of AC, base, and subgrade layers

Unstandardized 
Coefficients

Standardized 
Coefficients

Collinearity 
StatisticsVariables

Beta Std. Error Beta (rank)
t Sig.

Tolerance VIF*

Constant 8.538 1.220 6.997 0.000

Strain 0.555 0.071 0.727 (1) 7.820 0.000 0.802 1.247

% passing # 10 -1.013 0.156 -0.611 (4) -6.485 0.000 0.781 1.281

VFA -0.580 0.238 -0.213 (3) -2.439 0.035 0.907 1.103

αAC

MAAT 0.732 0.105 0.589 (2) 6.951 0.000 0.966 1.036

Constant 1.909 0.419 4.550 0.001

αAC 4.102 0.658 0.786 (1) 6.229 0.000 0.995 1.005µAC

FI -0.213 0.066 -0.406 (2) -3.219 0.008 0.995 1.005

Constant -10.511 3.519 -2.987 0.007

Modulus 0.102 0.037 0.447 (1) 2.751 0.012 0.721 1.387

Thickness 0.066 0.051 0.205 (3) 1.303 0.206 0.771 1.297

P200 -0.098 0.032 -0.462 (4) -3.094 0.005 0.854 1.172

GI 1.982 0.715 0.429 (2) 2.774 0.011 0.794 1.259

αBase

Constant -4.934 2.083 -2.369 0.027

α 6.256 0.942 0.742 (1) 6.639 0.000 0.966 1.035

Thickness -0.808 0.355 -0.298 (2) -2.280 0.032 0.707 1.415µ Base

Strain -0.809 0.254 -0.417 (3) -3.182 0.004 0.700 1.428

Constant -11.187 3.965 -2.822 0.018

Strain 0.043 0.031 0.283 (6) 1.391 0.194 0.798 1.252

GI 1.890 0.805 0.955 (2) 2.348 0.041 0.199 5.020

PI 0.116 0.035 1.271 (1) 3.342 0.007 0.228 4.387

D32 0.140 0.061 0.914 (3) 2.269 0.047 0.203 4.924

FI 0.036 0.020 0.656 (5) 1.796 0.103 0.247 4.047

αSG

Wet days 0.326 0.105 0.853 (4) 3.109 0.011 0.438 2.281

Constant -144.12 21.825 -6.603 0.000

SG modulus 2.410 0.956 0.403 (3) 2.521 0.027 0.371 2.692

Strain -0.764 0.274 -0.388 (4) -2.786 0.016 0.490 2.043

GI 22.594 5.006 0.890 (2) 4.513 0.001 0.244 4.096

µSG

PI 1.304 0.211 1.118 (1) 6.191 0.000 0.291 3.436
* Variance Inflation Factor
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Table 5 Descriptive statistics of PDPs and their variables

Layer Variable Mean Standard Error Minimum Maximum
αAC 0.589 0.173 0.207 0.844
µAC 0.649 0.675 0.010 2.059

Strain 6.35E-05 2.73E-05 2.69E-05 1.03E-04
P10 37 8 24 49

VFA 51.6 6.8 38.5 67.3
Max AT 22 6 12 29

AC

FI 158 273 1 988
µbase 0.60 0.77 0.01 2.44
α base 0.76 0.16 0.50 0.99

modulus 45058 41131 4599 178098
thickness 21.7 11.0 3.6 43.3

Strain 1.38E-04 1.21E-04 1.29E-05 5.07E-04
P200 29.1 31.5 5.9 91.3

Base

GI 106.59 4.86 98.38 115.99
µSG 0.22 0.41 0.01 1.67
αSG 0.74 0.08 0.56 0.85

modulus 31189 7827 16846 48495
strain 4.578E-05 3.171E-05 1.014E-05 1.077E-04

GI 109.94 6.62 100.86 120.13
PI 13.82 12.21 1.00 39.00

D32 61.12 35.66 8.43 153.43
FI 168.31 202.53 0.74 667.27

SG

Wet days 112.87 34.34 75.04 163.43
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Figure 1 Field versus predicted total surface rut depth
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Figure 2 Actual versus predicted PDPs for AC layer
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Figure 3 Sieve analysis: (a) AC layer, (b) base layer, and (c) Subgrade layer
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Figure 4 Actual versus predicted PDPs for base layer
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Figure 6 Field versus predicted total surface rut depth for section SPS-1 50113
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